HBM functional imaging analysis contest data analysis in wavelet space.

نویسندگان

  • John A D Aston
  • Federico E Turkheimer
  • Matthew Brett
چکیده

An analysis of the Functional Imaging Analysis Contest (FIAC) data is presented using spatial wavelet processing. This technique allows the image to be filtered adaptively according to the data itself, rather than relying on a predetermined filter. This adaptive filtering leads to better estimation of the parameters and contrasts in terms of mean squared error. It will be shown that by introducing a slight bias into the estimation, a large reduction in the variance can be achieved, leading to better overall mean squared error estimates. As no single filter needs to be preselected, results containing many scales of information can be found. In the FIAC data, it is shown that both small-scale and large-scale (smoother, more dispersed) effects occur. The combination of small- and large-scale effects detected in the FIAC data would be easy to miss using conventional single filter analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Practice-related changes in neural activation patterns investigated via wavelet-based clustering analysis.

OBJECTIVES To evaluate brain activation using functional magnetic resonance imaging (fMRI) and specifically, activation changes across time associated with practice-related cognitive control during eye movement tasks. EXPERIMENTAL DESIGN Participants were engaged in antisaccade performance (generating a glance away from a cue) while fMR images were acquired during two separate test sessions: ...

متن کامل

Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI

Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...

متن کامل

A Wavelet-Based Statistical Analysis of fMRI data: I

We propose a new method for statistical analysis of functional magnetic resonance imaging (fMRI) data. The discrete wavelet transformation is employed as a tool for efficient and robust signal representation. We use structural MRI and functional fMRI to empirically estimate the distribution of the wavelet coefficients of the data both across individuals and across spatial locations. An anatomic...

متن کامل

Damage identification of structures using experimental modal analysis and continuous wavelet transform

Abstract: Modal analysis is a powerful technique for understanding the behavior and performance of structures. Modal analysis can be conducted via artificial excitation, e.g. shaker or instrument hammer excitation. Input force and output responses are measured. That is normally referred to as experimental modal analysis (EMA). EMA consists of three steps: data acquisition, system identificatio...

متن کامل

Wavelet-Based Statistical Analysis in Functional Neuroimaging

Wavelet-based analysis versus Gaussian smoothing in statistical parametric mapping (SPM) for detecting and analyzing brain activity from functional magnetic resonance imaging (fMRI) data is presented. Detection of activation in fMRI data can be performed in the wavelet domain by a coefficient-wise statistical t-test. The link between the wavelet analysis and SPM is based on two observations: (i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human brain mapping

دوره 27 5  شماره 

صفحات  -

تاریخ انتشار 2006